4. [8 points] Consider a solid whose base is contained between the curves $y=e^{x}, y=1$, and $x=3$. Cross-sectional slices perpendicular to the x -axis are rectangles, having length contained in the base region mentioned above and height determined by $g(x)=x^{2}$. Determine the exact volume of this solid.
Solution: The slice has volume $x^{2}\left(e^{x}-1\right) \Delta x$. Summing the slices and letting Δx go to 0 , we have

$$
\begin{aligned}
\text { Volume } & =\int_{0}^{3} x^{2}\left(e^{x}-1\right) d x \\
& =\int_{0}^{3} x^{2} e^{x} d x-\int_{0}^{3} x^{2} d x \\
& =\left(\left.x^{2} e^{x}\right|_{0} ^{3}-\int_{0}^{3} 2 x e^{x} d x\right)-\left.\frac{1}{3} x^{3}\right|_{0} ^{3} \\
& =\left(\left.x^{2} e^{x}\right|_{0} ^{3}-\left(\left.2 x e^{x}\right|_{0} ^{3}-\int_{0}^{3} 2 e^{x} d x\right)\right)-\left.\frac{1}{3} x^{3}\right|_{0} ^{3} \\
& =\left.\left(x^{2} e^{x}-2 x e^{x}+2 e^{x}-\frac{1}{3} x^{3}\right)\right|_{0} ^{3} \\
& =9 e^{3}-6 e^{3}+2 e^{3}-9-2 \\
& =5 e^{3}-11
\end{aligned}
$$

