6. [10 points] Consider the function $f(x)=\ln (1+x)$ and its Taylor series about $x=0$.
a. [4 points] Determine the first four non-zero terms of the Taylor series for $f(x)=\ln (1+x)$ about $x=0$. Be sure to show enough work to support your answer.
Solution:

$$
\ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{1}{4} x^{4}+\ldots
$$

b. [4 points] Find the first three non-zero terms of the Taylor series for $g(x)=\ln \left(\frac{1+x}{1-x}\right)$ about $x=0$. Be sure to show enough work to support your answer. (Hint: You may find it helpful to utilize properties of logarithms.)

Solution: Using our answer from part (a), we have

$$
\ln (1-x)=(-x)-\frac{1}{2}(-x)^{2}+\frac{1}{3}(-x)^{3}-\frac{1}{4}(-x)^{4}+\ldots=-x-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}-\frac{1}{4} x^{4}-\ldots
$$

Since $g(x)=\ln (1+x)-\ln (1-x)$, we have

$$
g(x)=2 x+\frac{2}{3} x^{3}+\frac{2}{5} x^{5}+\ldots
$$

c. [2 points] Find the exact value of the sum of the series

$$
2\left(\frac{3}{4}\right)+\frac{2}{3}\left(\frac{3}{4}\right)^{3}+\frac{2}{5}\left(\frac{3}{4}\right)^{5}+\ldots .
$$

Solution: Using our answer for $g(x)$ is part (b), we see this is the sum for the Taylor series evaluated at $x=\frac{3}{4}$, so the sum of this series is $g\left(\frac{3}{4}\right)=\ln (7)$.

