- **9**. [12 points] For each statement below, circle TRUE if the statement is *always* true; otherwise, circle FALSE. There is no partial credit on this page.
 - **a.** [2 points] If the power series $\sum C_n x^n$ converges at x=1, then it converges at x=-1.

True False

b. [2 points] Consider the point (x_0, y_0) given in Cartesian coordinates and its polar coordinates equivalent (r_0, θ_0) . If $\frac{y_0}{x_0} = 1$, then $\theta_0 = \frac{\pi}{4}$.

True False

c. [2 points] $\frac{d}{dx} \left(\int_x^2 \cos(\sin(t^2)) dt \right) = \cos(\sin(x^2)).$

True False

d. [2 points] Suppse h(x) is a continuous function for x > 0. If $\int_1^\infty h(x) dx$ converges then for constant 0 < a < 1, $\int_1^\infty h(\frac{x}{a}) dx$ also converges.

True False

e. [2 points] If p(x) is a probability density function, then the units of $\int_{-\infty}^{\infty} xp(x)dx$ are the same as the units of x.

True False

f. [2 points] The function $P(x) = (x-1) - \frac{1}{3!}(x-1)^3$ is the third degree Taylor polynomial for $f(x) = \sin(\pi x)$ about x = 1.

True False