9. [12 points] For each statement below, circle TRUE if the statement is always true; otherwise, circle FALSE. There is no partial credit on this page.
a. [2 points] If the power series $\sum C_{n} x^{n}$ converges at $x=1$, then it converges at $x=-1$.
b. [2 points] Consider the point $\left(x_{0}, y_{0}\right)$ given in Cartesian coordinates and its polar coordinates equivalent $\left(r_{0}, \theta_{0}\right)$. If $\frac{y_{0}}{x_{0}}=1$, then $\theta_{0}=\frac{\pi}{4}$.
c. [2 points] $\frac{d}{d x}\left(\int_{x}^{2} \cos \left(\sin \left(t^{2}\right)\right) d t\right)=\cos \left(\sin \left(x^{2}\right)\right)$.

True
False
d. [2 points] Suppse $h(x)$ is a continuous function for $x>0$. If $\int_{1}^{\infty} h(x) d x$ converges then for constant $0<a<1, \int_{1}^{\infty} h\left(\frac{x}{a}\right) d x$ also converges.

> True

False
e. [2 points] If $p(x)$ is a probability density function, then the units of $\int_{-\infty}^{\infty} x p(x) d x$ are the same as the units of x.

> True

False
f. [2 points] The function $P(x)=(x-1)-\frac{1}{3!}(x-1)^{3}$ is the third degree Taylor polynomial for $f(x)=\sin (\pi x)$ about $x=1$.

