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Find the interval of convergence of the power series. Justify your answer.

Solution: By the ratio test, the interval of convergence (except for the endpoints)
consists of those x-values for which
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Simplifying, we get
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so the tentative interval of convergence is −2 < x < 6. We must check the endpoints
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converges by the alternating series test.

•Endpoint x = 6:
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converges by the p-test.

Therefore, the interval of convergence is −2 ≤ x ≤ 6.
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