3. [8 points] Let

$$
\sum_{n=1}^{\infty} \frac{1}{4^{n} n^{3}}(x-2)^{n}
$$

Find the interval of convergence of the power series. Justify your answer.
Solution: By the ratio test, the interval of convergence (except for the endpoints) consists of those x-values for which

$$
\lim _{n \rightarrow \infty}\left|\frac{\frac{(x-2)^{n+1}}{4^{n+1}(n+1)^{3}}}{\frac{(x-2)^{n}}{4^{n} n^{3}}}\right|<1
$$

Simplifying, we get

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{\frac{(x-2)^{n+1}}{4^{x+1}(n+1)^{3}}}{\frac{(x-2)^{n}}{4^{n} n^{3}}}\right|<1 \\
&|x-2| \lim _{n \rightarrow \infty}\left|\frac{(x-2) n^{3}}{\lim _{n \rightarrow \infty} \left\lvert\, \frac{(x+1)^{3}}{4(n+1)^{3}}\right.}\right|<1 \\
& 4\left(n^{3}+3 n^{2}+3 n+1\right)<1 \\
&|x-2| \frac{1}{4}<1 \\
&|x-2|<4
\end{aligned}
$$

so the tentative interval of convergence is $-2<x<6$. We must check the endpoints
\bullet Endpoint $x=-2$:

$$
\sum_{n=1}^{\infty} \frac{1}{4^{n} n^{3}}(-2-2)^{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3}}
$$

converges by the alternating series test.
\bullet Endpoint $x=6$:

$$
\sum_{n=1}^{\infty} \frac{1}{4^{n} n^{3}}(6-2)^{n}=\sum_{n=1}^{\infty} \frac{1}{n^{3}}
$$

converges by the p-test.
Therefore, the interval of convergence is $-2 \leq x \leq 6$.

