8. [13 points] A lamp is at the border of a small lagoon. The picture below shows the lamp at the origin and the lagoon described by the polar curve $r = f(\theta)$. During the night, the lamp illuminates the shaded region on the lagoon shown below.

a. [3 points] If A is the shaded area shown above, then $A = \int_a^b F(\theta) d\theta$ where

$$F(\theta) = \underline{\qquad} \qquad a = \underline{\qquad} \qquad b = \underline{\qquad}.$$

$$Solution: \quad F(\theta) = \frac{1}{2}f(\theta)^2 \quad a = .8 \quad b = 1.4$$

b. [5 points] Fill the table below with the values of $F(\theta)$. Then approximate the area of the shaded region using Left(3). Write all the terms in your sum.

θ	.8	1	1.2	1.4
$F(\theta)$				

θ	.8	1	1.2	1.4
$F(\theta)$.3528	.4141	.4608	.49

$$Left(3) = .2(.3528 + .4141 + .4608) = .2455.$$

c. [1 point] Is $F(\theta)$ increasing, decreasing or neither?

Solution: Increasing

- **d.** [1 point] Is $F(\theta)$ concave up, concave down or neither? Solution: Concave down
- e. [3 points] Which Riemann sums (Left(3), Right(3) and/or Trap(3)) yield an underestimate of the shaded area?

Solution: Left(3) and Trap(3).