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9. [9 points]

a. [2 points] Find the Taylor series about x = 0 of sin(x2). Your answer should include
a formula for the general term in the series.

Solution:
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b. [2 points] Letm be a positive integer, find the Taylor series about x = 0 of cos(mπx).
Your answer should include a formula for the general term in the series.

Solution:
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c. [5 points] Use the second degree Taylor polynomials of sin(x2) and cos(mπx) to
approximate the value of bm, where

bm =

∫
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sin(x2) cos(mπx)dx.

(The number bm is called a Fourier coefficient of the function sin x2. These num-
bers play a key role in Fourier analysis, a subject with widespread applications in
engineering and the sciences.)
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