1. [12 points] Indicate whether each of the following statements are true or false by circling the correct answer. **You do not need to justify your answers.**

 a. [2 points] The curve defined by the parametric equations \(x = 1 - \cos t \) and \(y = t - \sin t \) has a vertical tangent line when \(t = \pi \).

 True False

 b. [2 points] If the sequence \(a_n \) converges to 0 and \(\sum_{n=1}^{\infty} b_n \) converges, then \(\sum_{n=1}^{\infty} (a_n + b_n) \) converges.

 True False

 c. [2 points] The graph of a polar function \(r = f(\theta) \) in the \((x, y)\)-plane has a horizontal tangent line at \(\theta = a \) if \(f'(a) = 0 \).

 True False

 d. [2 points] The integral \(\int_0^1 \pi x^4 \, dx \) computes the volume of the solid obtained by rotating the graph of \(y = x^2 \) around the \(x \) axis for \(0 \leq x \leq 1 \).

 True False

 e. [2 points] Let \(\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 + 1} x^n \) be the Taylor series of \(f(x) \) about 0. Then \(f(x) \) is concave up at \(x = 0 \).

 True False

 f. [2 points] The integral test says that \(\sum_{n=1}^{\infty} \frac{1}{n^2} = \int_1^{\infty} \frac{1}{x^2} \, dx \).

 True False