- **3**. [12 points]
 - **a.** [6 points] State whether each of the following series converges or diverges. Indicate which test you use to decide. Show all of your work to receive full credit.

$$1. \quad \sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln n}}$$

Solution: The function $\frac{1}{n\sqrt{\ln n}}$ is decreasing and positive for $n \geq 2$, then the Integral test says that $\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln n}}$ behaves as $\int_{2}^{\infty} \frac{1}{x\sqrt{\ln x}} dx$.

$$\int_2^\infty \frac{1}{x\sqrt{\ln x}} dx = \lim_{b \to \infty} \int_2^b \frac{1}{x\sqrt{\ln x}} dx = \lim_{b \to \infty} \int_{\ln 2}^{\ln b} u^{-\frac{1}{2}} du = \lim_{b \to \infty} 2\sqrt{u} \left| \frac{\ln b}{\ln 2} \right| = \infty.$$

Hence $\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln n}}$ diverges.

$$2. \quad \sum_{n=1}^{\infty} \frac{\cos^2(n)}{\sqrt{n^3}}$$

Solution: Since $0 \le \frac{\cos^2(n)}{\sqrt{n^3}} \le \frac{1}{n^{\frac{3}{2}}}$, and $\sum_{n=0}^{\infty} \frac{1}{n^{\frac{3}{2}}}$ converges by p-series test $(p = \frac{3}{2} > 1)$, then comparison test yields the convergence of $\sum_{n=1}^{\infty} \frac{\cos^2(n)}{\sqrt{n^3}}$.

b. [6 points] Decide whether each of the following series converges absolutely, converges conditionally or diverges. Circle your answer. No justification required.

1.
$$\sum_{n=0}^{\infty} \frac{(-1)^n \sqrt{n^2 + 1}}{n^2 + n + 8}$$

Converges absolutely

Converges conditionally

Diverges

$$2. \quad \sum_{n=0}^{\infty} \frac{(-2)^{3n}}{5^n}$$

Converges absolutely

Converges conditionally

Diverges

Solution:
$$\sum_{n=0}^{\infty} \left| \frac{(-1)^n \sqrt{n^2 + 1}}{n^2 + n + 8} \right| = \sum_{n=0}^{\infty} \frac{\sqrt{n^2 + 1}}{n^2 + n + 8}$$
 behaves as $\sum_{n=1}^{\infty} \frac{1}{n}$ since

$$\lim_{n \to \infty} \frac{\frac{\sqrt{n^2 + 1}}{n^2 + n + 8}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{n\sqrt{n^2 + 1}}{n^2 + n + 8} = 1 > 0.$$

Since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges (p-series test p=1), then by limit comparison test

$$\sum_{n=0}^{\infty} \left| \frac{(-1)^n \sqrt{n^2 + 1}}{n^2 + n + 8} \right|$$
 diverges.

The convergence of $\sum_{n=0}^{\infty} \frac{(-1)^n \sqrt{n^2+1}}{n^2+n+8}$ follows from alternating series test since for

$$a_n = \frac{\sqrt{n^2+1}}{n^2+n+8}$$
:

- $\bullet \lim_{n \to \infty} a_n = 0.$
- $\bullet a_n$ is decreasing

$$\frac{d}{dn}\left(\frac{\sqrt{n^2+1}}{n^2+n+8}\right) = \frac{-1+6n-n^3}{\sqrt{1+n^2}(n^2+n+8)^2} < 0$$

for n large.

$$\sum_{n=0}^{\infty} \frac{(-2)^{3n}}{5^n} = \sum_{n=0}^{\infty} \left(-\frac{8}{5}\right)^n \text{ is a geometric series with ratio}$$

$$r = -\frac{8}{5} < -1, \text{ hence it diverges.}$$