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3. [12 points]
a. [6 points] State whether each of the following series converges or diverges. Indicate
which test you use to decide. Show all of your work to receive full credit.
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b. [6 points] Decide whether each of the following series converges absolutely, con-
verges conditionally or diverges. Circle your answer. No justification required.
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Since Z — diverges (p-series test p = 1), then by limit comparison test
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r = _g < —1, hence it diverges.
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