4. [11 points]

 a. [2 points] Let \(g(x) \) be a continuous function for \(x > 0 \) and let \(G(x) \) be the antiderivative of \(g(x) \) with \(G(1) = 0 \). Write a formula for \(G(x) \).

 \[\text{Solution: } G(x) = \int_1^x g(t) \, dt \]

 b. [5 points] The graph of \(g(x) \) is shown below. The function \(g(x) \) has a vertical asymptote at \(x = 0 \) and \(g(x) < \frac{1}{\sqrt{x}} \) for \(x > 0 \).

 Sketch the graph of \(G(x) \) for \(0 \leq x \leq 2 \). Make sure you indicate where \(G(x) \) has asymptotes, local maxima, or local minima, as well as where \(G(x) \) is increasing, decreasing, concave up or concave down.

 \[y = \frac{1}{\sqrt{x}} \]
c. [4 points] Suppose $h(x)$ and $f(x)$ are continuous functions satisfying

i. $0 < f(x) \leq \frac{1}{x^p}$ for $0 < x \leq 1$.

ii. $\frac{1}{x^{p+\frac{1}{2}}}$ $\leq h(x) \leq \frac{1}{x^p}$ for $x \geq 1$.

Decide whether each of the following expressions converge, diverge or if there is not enough information available to conclude.

Solution:

i. If $p = \frac{1}{2}$,

(a) \(\lim_{x \to \infty} h(x) \)
\[\text{Converges} \quad \text{Diverges} \quad \text{Not possible to conclude.} \]

(b) \(\int_1^\infty h(x) \, dx \):
\[\text{Converges} \quad \text{Diverges} \quad \text{Not possible to conclude.} \]

ii. If $p = 2$,

(a) \(\int_1^\infty h(x) \, dx \):
\[\text{Converges} \quad \text{Diverges} \quad \text{Not possible to conclude.} \]

(b) \(\int_0^1 f(x) \, dx \):
\[\text{Converges} \quad \text{Diverges} \quad \text{Not possible to conclude.} \]