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a. [2 points] Does the series converge for x = 2? Justify your answer.

Solution: At x = 2
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The series diverge since lim
n→∞
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b. [2 points] Based only on your answer from part a, what can you say about R, the
radius of convergence of the series? Circle your answer.

Solution: R = 2 R > 2 R < 2 R ≤ 2 R ≥ 2

since it is possible for x = 2 to be one of the endpoints in the interval of con-
vergence.

c. [4 points] Find the interval of convergence of the series.

Solution:
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If x
2

4
< 1, then the series converges. Hence Ratio test states that the series con-

verges if −2 < x < 2. We need to check the endpoints x = ±2. We already checked
x = 2. For x = −2,
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diverges by part a. The interval of convergence of the series is −2 < x < 2.
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