8. [8 points] The function

$$
F(x)=\int_{0}^{x} \sqrt{1+9 t^{4}} d t
$$

computes the arc length of the graph of the function $y=t^{3}$ from $t=0$ to $t=x$.
a. [4 points] Approximate the value of $F\left(\frac{1}{2}\right)$, the arc length of the curve $y=t^{3}$ for $0 \leq t \leq \frac{1}{2}$, using $\operatorname{RIGHT}(2), \operatorname{LEFT}(2), \operatorname{TRAP}(2)$ and $M I D(2)$. Write each term of each sum to receive full credit.

Solution: We have $\Delta x=1 / 4$. Using this we have
$\operatorname{LEFT}(2)=\frac{1}{4}\left(1+\sqrt{1+9\left(\frac{1}{4}\right)^{4}}\right) \approx 0.504$.
$\operatorname{RIGHT}(2)=\frac{1}{4}\left(\sqrt{1+9\left(\frac{1}{4}\right)^{4}}+\sqrt{1+9\left(\frac{1}{2}\right)^{4}}\right) \approx 0.566$.
$T R A P(2)=\frac{1}{2}(L E F T(2)+R I G H T(2)) \approx 0.535$.
$M I D(2)=\frac{1}{4}\left(\sqrt{1+9\left(\frac{1}{8}\right)^{4}}+\sqrt{1+9\left(\frac{3}{8}\right)^{4}}\right) \approx 0.521$.
b. [2 points] Which approximation RIGHT or LEFT is guaranteed to give an underestimate for $F\left(\frac{1}{2}\right)$? Justify.
Solution: The integrand $f(x)=\sqrt{1+9 x^{4}}$ is an increasing function, so $\operatorname{LEFT}(2)$ is an underestimate.
c. [2 points] Find $F^{\prime}(1)$.

Solution: Using the second fundamental theorem of calculus, we have

$$
F^{\prime}(x)=\sqrt{1+9 x^{4}}
$$

so $F^{\prime}(1)=\sqrt{10}$.

