8. [8 points] The function

$$F(x) = \int_0^x \sqrt{1 + 9t^4} dt.$$

computes the arc length of the graph of the function $y = t^3$ from t = 0 to t = x.

a. [4 points] Approximate the value of $F(\frac{1}{2})$, the arc length of the curve $y = t^3$ for $0 \le t \le \frac{1}{2}$, using RIGHT(2), LEFT(2), TRAP(2) and MID(2). Write each term of each sum to receive full credit.

Solution: We have
$$\Delta x = 1/4$$
. Using this we have
 $LEFT(2) = \frac{1}{4} \left(1 + \sqrt{1+9\left(\frac{1}{4}\right)^4} \right) \approx 0.504.$
 $RIGHT(2) = \frac{1}{4} \left(\sqrt{1+9\left(\frac{1}{4}\right)^4} + \sqrt{1+9\left(\frac{1}{2}\right)^4} \right) \approx 0.566.$
 $TRAP(2) = \frac{1}{2} (LEFT(2) + RIGHT(2)) \approx 0.535.$
 $MID(2) = \frac{1}{4} \left(\sqrt{1+9\left(\frac{1}{8}\right)^4} + \sqrt{1+9\left(\frac{3}{8}\right)^4} \right) \approx 0.521.$

b. [2 points] Which approximation *RIGHT* or *LEFT* is guaranteed to give an underestimate for $F(\frac{1}{2})$? Justify.

Solution: The integrand $f(x) = \sqrt{1 + 9x^4}$ is an increasing function, so LEFT(2) is an underestimate.

c. [2 points] Find F'(1).

Solution: Using the second fundamental theorem of calculus, we have

$$F'(x) = \sqrt{1 + 9x^4}$$

so
$$F'(1) = \sqrt{10}$$
.