
- 3. [10 points] For each of the following questions circle the correct answer.
 - **a.** [2 points] What is the value of the series $\sum_{n=0}^{\infty} \frac{(-1)^n 2^{2n}}{n!}?$ $\cos(2) \qquad e^{-2} \qquad \cos(4) \qquad e^{-4}$ **b.** [2 points] What is the value of the series $\sum_{n=1}^{\infty} \frac{2^{2n}(-1)^n}{(2n+1)!}?$ $\frac{1}{2}\sin(2) \qquad \sin(2) 2 \qquad \sin(2) \qquad \frac{1}{2}(\sin(2) 2)$ **c.** [2 points] Suppose that $1 + x \frac{1}{4}x^2 + \frac{1}{12}x^3$ is the 3rd degree Taylor polymetric for the series is the 3rd degree Taylor polymetric for th
 - c. [2 points] Suppose that $1 + x \frac{1}{4}x^2 + \frac{1}{10}x^3$ is the 3rd degree Taylor polynomial for a function f(x). Which of the following pictures could be a graph of f(x)?

d. [2 points] What is the Taylor series of $2xe^{x^2}$ centered at x = 0?

$$\sum_{n=0}^{\infty} \frac{2x^{2n+1}}{n!} \qquad \qquad \sum_{n=1}^{\infty} \frac{2x^{2n-1}}{n!} \qquad \qquad \sum_{n=1}^{\infty} \frac{2x^{2n+1}}{(n-1)!} \qquad \qquad \sum_{n=0}^{\infty} \frac{2x^{2n-1}}{n!}$$

e. [2 points] The radius of convergence of the Taylor series $\sum_{n=1}^{\infty} \frac{(x+5)^n 5^{-n}}{n+5}$ is R = 5. What is the interval of convergence of the series?

[-10,0) (-10,0) (0,10] [-10,0] [0,10)