- **1**. [10 points]
 - **a.** [4 points] Consider the differential equation $y' = y^2 + y 2$. Find all of the equilibrium solutions of the differential equation and indicate whether they are stable or unstable. Circle your answers.

Solution: $y' = y^2 + y - 2 = (y+2)(y-1)$. Therefore the equlibrium solutions are y = -2 which is stable and y = 1 which is unstable.

b. [4 points] Solve the differential equation $y' = y^2$ with initial condition y(0) = 1.

Solution: Separating variables we have $\frac{dy}{y^2} = dx$. Integrating both sides we have $-\frac{1}{y} = x + c$ therefore $y = \frac{-1}{x+c}$. Plugging in the initial condition we must have c = -1. So $y = \frac{1}{1-x}$.

c. [2 points] Which of the following functions is a solution to the differential equation $y' = \sin(x) + y$? Circle your answer.

$$y = \frac{1}{2}(\sin(x) + \cos(x))$$

$$y = -\frac{1}{2}(\sin(x) - \cos(x))$$

$$y = \frac{1}{2}(\sin(x) - \cos(x))$$

$$y = -\frac{1}{2}(\sin(x) + \cos(x))$$