- **3.** [10 points] For each of the following questions circle the correct answer.
 - **a.** [2 points] What is the value of the series $\sum_{n=0}^{\infty} \frac{(-1)^n 2^{2n}}{n!}$?
 - $\cos(2)$
- $\cos(4)$
- **b.** [2 points] What is the value of the series $\sum_{n=1}^{\infty} \frac{2^{2n}(-1)^n}{(2n+1)!}$?
 - $\frac{1}{2}\sin(2)$
- $\sin(2) 2$
- $\sin(2)$
- $\frac{1}{2}(\sin(2)-2)$
- c. [2 points] Suppose that $1 + x \frac{1}{4}x^2 + \frac{1}{10}x^3$ is the 3rd degree Taylor polynomial for a function f(x). Which of the following pictures could be a graph of f(x)?

- **d**. [2 points] What is the Taylor series of $2xe^{x^2}$ centered at x = 0?
 - $\sum_{n=0}^{\infty} \frac{2x^{2n+1}}{n!} \qquad \sum_{n=1}^{\infty} \frac{2x^{2n-1}}{n!} \qquad \sum_{n=1}^{\infty} \frac{2x^{2n+1}}{(n-1)!} \qquad \sum_{n=0}^{\infty} \frac{2x^{2n-1}}{n!}$

- e. [2 points] The radius of convergence of the Taylor series $\sum_{n=1}^{\infty} \frac{(x+5)^n 5^{-n}}{n+5}$ is R=5. What is the interval of convergence of the series?
 - -10, 0
- (-10,0)
- (0, 10]
- [-10, 0]
- [0, 10)