- **5**. [12 points] For each of the following statements, circle True if the statement is always true and circle False otherwise. No justification is necessary.
 - **a.** [2 points] Suppose that an object has constant density δ and center of mass $(\bar{x}, \bar{y}, \bar{z})$. If the density of the object is doubled to 2δ then the center of mass changes to $(2\bar{x}, 2\bar{y}, 2\bar{z})$.

True False

b. [2 points] Every solution of the differential equation y' = y is increasing.

True False

c. [2 points] If f(x) is a continuous function and F(x) is an antiderivative of f(x), then $F(x) = \int_3^x f(t)dt + K$ for some constant K.

True False

d. [2 points] If $g(x) = \int_{-e^x}^{e^x} t^2 dt$ and $h(x) = \int_0^{2x} e^{t^2} dt$ then $g'(x) \le h'(x)$ for all x > 1.

True False

e. [2 points] If w(x) is a positive continuous function and the series $\sum_{n=1}^{\infty} w(n)$ converges then the integral $\int_{1}^{\infty} w(x) dx$ must also converge.

True False

f. [2 points] Suppose that a_n is a decreasing sequence and $0 \le a_n \le 1$ then $b_n = \cos(a_n)$ is a convergent sequence.

True | False