8. [12 points] Suppose a_n and b_n are sequences of positive numbers with the following properties.

- $\sum_{n=0}^{\infty} a_n$ converges.
- $\sum_{n=1}^{\infty} b_n$ diverges.
- $0 < b_n \le M$ for some positive number M.

For each of the following questions, circle the correct answer. No justification is necessary.

- **a.** [2 points] Does the series $\sum_{n=1}^{\infty} a_n b_n$ converge?
 - Converge
- Diverge
- Cannot determine
- **b.** [2 points] Does the series $\sum_{n=1}^{\infty} (-1)^n b_n$ converge?
 - Converge
- Diverge
- Cannot determine
- **c.** [2 points] Does the series $\sum_{n=1}^{\infty} \sqrt{b_n}$ converge?
 - Converge
- Diverge
- Cannot determine
- **d.** [2 points] Does the series $\sum_{n=1}^{\infty} \sin(a_n)$ converge?
 - Converge
- Diverge
- Cannot determine
- e. [2 points] Does the series $\sum_{n=1}^{\infty} (a_n + b_n)^2$ converge?
 - Converge
- Diverge

- Cannot determine
- **f.** [2 points] Does the series $\sum_{n=1}^{\infty} e^{-b_n}$ converge?
 - Converge
- Diverge

Cannot determine