
11. [12 points] You construct a snowflake by starting with a square piece of paper of side length 3 inches. You divide the square into a three by three grid of squares of side length one and remove the four squares in the grid that share a side with the center square in the grid. For each remaining square in the grid, subdivide each of them into 9 equally sized squares and remove the four squares in each of these new grids that share a side with the center square in the grid. You continue in this manner for a long time.

a. [3 points] Write a formula that gives the perimeter, P_N , of the black squares that make up the snowflake after N steps.

Solution:
$$P_N = 12 \left(\frac{5}{3}\right)^N$$

b. [2 points] Find $\lim_{N\to\infty} P_N$.

Solution: P_N tends to infinity as $N \to \infty$.

c. [3 points] Suppose $N \ge 1$. Write a sum that gives the area, A_N of all the squares you have **removed** after N steps.

Solution:
$$\sum_{j=0}^{N-1} 4\left(\frac{5}{9}\right)^j$$

d. [2 points] Write a closed form expression for A_N .

Solution:
$$A_N = 4 \frac{1 - \left(\frac{5}{9}\right)^N}{1 - \frac{5}{9}}$$

e. [2 points] Find the limit as $N \to \infty$ of your expression in (d).

Solution:
$$\lim_{N \to \infty} A_N = 9$$