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5. [10 points]

a. [5 points| Determine the radius of convergence of the power series
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Solution: The above series will converge for x values such that
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and so the desired inequality holds if E|x —5|* < 1. This is equivalent to |z — 5| < 2.
Thus, the radius of convergence is 2.

The radius of convergence is 2.
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b. [5 points] The power series g (nj_i_)f
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interval of convergence for this power series.

has radius of convergence 1. Determine the
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For x = 1, we get the series E i We have that lim "4;“1 = lim notent 1.
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The limit comparison test then tells us that the series g i1 converges if and only
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if the series g —3 converges. Since E o~ is a p-series with p > 1 it converges, and so
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For x = —1, we get the series Z — 5 By the work shown above, this series
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converges absolutely.
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The interval of convergence for Z (nji)x isthen -1 <z <1
= ontt 1

The interval of convergence is [—1, 1].
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