- **3**. [12 points] In this problem we study the integral $I = \int_{1}^{1.5} \ln x \, dx$.
 - **a**. [2 points] Write a left Riemann sum with 5 subdivisions that approximates I, showing all the terms in your sum. **Circle** your sum and leave all the terms in **exact** form.

b. [2 points] Use the midpoint rule with 5 subdivisions to approximate I, showing all the terms in your sum. **Circle** your sum and leave all the terms in **exact** form.

c. [4 points] (i) Use the *u*-substitution u = x - 1 to find an integral J, which is equal to I. Circle your answer.

(ii) Give $P_3(u)$, the 3rd degree Taylor polynomial around u = 0 for the integrand of the integral J. Circle your answer.

(iii) Substitute $P_3(u)$ for the integrand of J and compute the resulting integral by hand. Circle your answer.

3. (continued)

d. [4 points] Finally find the exact value of $I = \int_{1}^{1.5} \ln x \, dx$ using integration by parts. Give your answer in **exact** form and show your work. **Circle** your answer.

4. [5 points]

The function g(x) satisfies the differential equation $y' = ay^2 - x$. The table on the right gives some information about g(x).

a.	[2 points]	Find a .
а.	2 points	I ma <i>a</i> .

x	g(x)	g'(x)
1	1	2

b. [3 points] Approximate g(1.2) using Euler's method with $\Delta x = 0.1$.