3. [12 points] In this problem we study the integral \(I = \int_{1}^{1.5} \ln x \, dx \).

 a. [2 points] Write a left Riemann sum with 5 subdivisions that approximates \(I \), showing all the terms in your sum. **Circle** your sum and leave all the terms in **exact** form.

 \[
 \begin{align*}
 &\frac{1}{5} \left(\ln 1 + \ln 1.1 + \ln 1.2 + \ln 1.3 + \ln 1.4 + \ln 1.5 \right) \\
 &= \frac{1}{5} \left(0 + \ln 1.1 + \ln 1.2 + \ln 1.3 + \ln 1.4 + \ln 1.5 \right)
 \end{align*}
 \]

 b. [2 points] Use the midpoint rule with 5 subdivisions to approximate \(I \), showing all the terms in your sum. **Circle** your sum and leave all the terms in **exact** form.

 \[
 \begin{align*}
 &\frac{1}{5} \left(\ln 1.05 + \ln 1.15 + \ln 1.25 + \ln 1.35 + \ln 1.45 \right) \\
 &= \frac{1}{5} \left(\ln 1.05 + \ln 1.15 + \ln 1.25 + \ln 1.35 + \ln 1.45 \right)
 \end{align*}
 \]

 c. [4 points] (i) Use the \(u \)-substitution \(u = x - 1 \) to find an integral \(J \), which is equal to \(I \). **Circle** your answer.

 \[
 J = \int_{0}^{0.5} \ln u \, du
 \]

 (ii) Give \(P_3(u) \), the 3rd degree Taylor polynomial around \(u = 0 \) for the integrand of the integral \(J \). **Circle** your answer.

 \[
 P_3(u) = u + \frac{u^2}{2} + \frac{u^3}{3}
 \]

 (iii) Substitute \(P_3(u) \) for the integrand of \(J \) and compute the resulting integral by hand. **Circle** your answer.

 \[
 \int_{0}^{0.5} \left(u + \frac{u^2}{2} + \frac{u^3}{3} \right) \, du
 \]

 \[
 = \left[\frac{1}{2} u^2 + \frac{1}{4} u^3 + \frac{1}{12} u^4 \right]_{0}^{0.5}
 \]

 \[
 = \frac{1}{2} \cdot 0.5^2 + \frac{1}{4} \cdot 0.5^3 + \frac{1}{12} \cdot 0.5^4
 \]

 \[
 = \frac{1}{8} + \frac{1}{32} + \frac{1}{96}
 \]

 \[
 = \frac{12}{96} + \frac{3}{96} + \frac{1}{96}
 \]

 \[
 = \frac{16}{96}
 \]

 \[
 = \frac{1}{6}
 \]
3. (continued)

d. [4 points] Finally find the exact value of \(I = \int_{1}^{1.5} \ln x \, dx \) using integration by parts. Give your answer in exact form and show your work. Circle your answer.

4. [5 points]

The function \(g(x) \) satisfies the differential equation \(y' = ay^2 - x \). The table on the right gives some information about \(g(x) \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(g(x))</th>
<th>(g'(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

a. [2 points] Find \(a \).

b. [3 points] Approximate \(g(1.2) \) using Euler’s method with \(\Delta x = 0.1 \).