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10. [14 points] A function f has domain [0,∞), and its graph is given below. The numbers
A,B,C are positive constants. The shaded region has finite area, but it extends infinitely in
the positive x-direction. The line y = C is a horizontal asymptote of f(x) and f(x) > C for
all x ≥ 0. The point (1, A) is a local maximum of f .
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a. [5 points] Determine the convergence of the improper integral below. You must give
full evidence supporting your answer, showing all your work and indicating
any theorems about integrals you use.

∫
1

0

f(x)

x
dx

Solution: We have that for 0 < x ≤ 1

f(x)

x
≥

B

x

The improper integral

∫
1

0

B

x
dx = B

∫
1

0

1

x
dx diverges by the p-test with p = 1. Thus,

the integral

∫
1

0

f(x)

x
dx diverges by the comparison test.
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10. (continued) For your convenience, the graph of f is given again. The numbers A,B,C

are positive constants. The shaded region has finite area, but it extends infinitely in the
positive x-direction. The line y = C is a horizontal asymptote of f(x) and f(x) > C for all
x ≥ 0. The point (1, A) is a local maximum of f .
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b. [3 points] Circle the correct answer. The value of the integral

∫
∞

1

f(x)f ′(x) dx

is C −A is C2
−A2

2
is B −A cannot be determined diverges

c. [3 points] Circle the correct answer. The value of the integral

∫
∞

1

f ′(x) dx

is C −A is C2
−A2

2
is C cannot be determined diverges

d. [3 points] Determine, with justification, whether the following series converges or diverges.

∞∑
n=1

(f(n)− C)

Solution: We notice that the function f(x)−C is decreasing, positive with lim
x→∞

(f(x)− C) = 0.

By the integral test, the series
∞∑
n=1

(f(n)− C)

converges if and only if the improper integral

∫
∞

1

(f(x)− C)

converges. But this integral gives exactly the shaded area, which we know that it is
finite. So this integral converges and therefore the series converges as well.
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