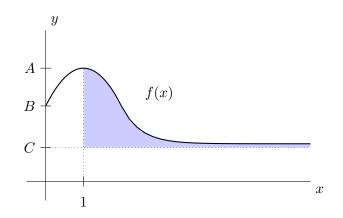
10. [14 points] A function f has domain $[0, \infty)$, and its graph is given below. The numbers A, B, C are positive constants. The shaded region has **finite area**, but it extends infinitely in the positive x-direction. The line y = C is a horizontal asymptote of f(x) and f(x) > C for all $x \ge 0$. The point (1, A) is a local maximum of f.



a. [5 points] Determine the convergence of the improper integral below. You must give full evidence supporting your answer, showing all your work and indicating any theorems about integrals you use.

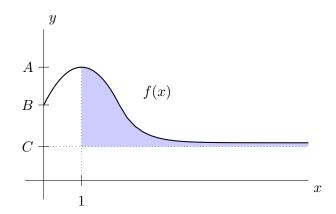
$$\int_0^1 \frac{f(x)}{x} \, dx$$

Solution: We have that for $0 < x \le 1$

$$\frac{f(x)}{x} \ge \frac{B}{x}$$

The improper integral $\int_0^1 \frac{B}{x} dx = B \int_0^1 \frac{1}{x} dx$ diverges by the *p*-test with p = 1. Thus, the integral $\int_0^1 \frac{f(x)}{x} dx$ diverges by the comparison test.

10. (continued) For your convenience, the graph of f is given again. The numbers A, B, C are positive constants. The shaded region has **finite area**, but it extends infinitely in the positive x-direction. The line y = C is a horizontal asymptote of f(x) and f(x) > C for all $x \ge 0$. The point (1, A) is a local maximum of f.



b. [3 points] **Circle** the correct answer. The value of the integral $\int_{1}^{\infty} f(x)f'(x) dx$

is C - A is $\frac{C^2 - A^2}{2}$ is B - A cannot be determined diverges

c. [3 points] **Circle** the correct answer. The value of the integral $\int_{1}^{\infty} f'(x) dx$

is
$$C - A$$
 is $\frac{C^2 - A^2}{2}$ is C cannot be determined diverges

d. [3 points] Determine, with justification, whether the following series converges or diverges.

$$\sum_{n=1}^{\infty} (f(n) - C)$$

Solution: We notice that the function f(x) - C is decreasing, positive with $\lim_{x \to \infty} (f(x) - C) = 0$. By the integral test, the series

$$\sum_{n=1}^{\infty} (f(n) - C)$$

converges if and only if the improper integral

$$\int_{1}^{\infty} (f(x) - C)$$

converges. But this integral gives exactly the shaded area, which we know that it is finite. So this integral converges and therefore the series converges as well.