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2. [12 points] In this problem you must give full evidence supporting your answer,
showing all your work and indicating any theorems about series you use.

a. [7 points] Show that the following series converges. Does it converge conditionally or

absolutely? Justify.
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Solution: We notice that
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converges because it is a geometric series with ratio 1/2 and [1/2| < 1. Thus, using the
inequality (*), the series
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converges by the comparison test. Since this series converges, the series
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converges absolutely. (This also shows that it converges).

b. [5 points] Determine whether the following series converges or diverges:
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Solution: The function f(z) = — 11193 is decreasing and has lim f(xz) = 0. Moreover,
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diverges. Therefore, the integral test applies and tells us that the series in question di-
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where in the second equality we used the substitution v = In z. So the integral / dx
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verges as well.
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