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2. [12 points] In this problem you must give full evidence supporting your answer,

showing all your work and indicating any theorems about series you use.

a. [7 points] Show that the following series converges. Does it converge conditionally or
absolutely? Justify.
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Solution: We notice that
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The series
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converges because it is a geometric series with ratio 1/2 and |1/2| < 1. Thus, using the
inequality (∗), the series
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converges by the comparison test. Since this series converges, the series
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converges absolutely. (This also shows that it converges).

b. [5 points] Determine whether the following series converges or diverges:

∞
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n lnn

Solution: The function f(x) = 1

x lnx
is decreasing and has lim

x→∞

f(x) = 0. Moreover,
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du = lim

b→∞

(ln(ln b)− ln(ln 2)) = ∞

where in the second equality we used the substitution u = lnx. So the integral
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diverges. Therefore, the integral test applies and tells us that the series in question di-
verges as well.
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