11. [12 points] Quinn is a patient taking a new experimental medicine.
 a. [4 points] Quinn knows that the amount of the medicine in her body decays at a rate proportional to the current amount of the medicine in her body with constant of proportionality $k > 0$. Let $Q = Q(t)$ be the quantity, in mg, of this medicine that is in Quinn’s body t days after she begins taking it. Assuming the medicine enters her body at a continuous rate of 200mg per day, write a differential equation that models $Q(t)$, and give an appropriate initial condition.

 Answer: Differential Equation:
 Initial Condition:

For parts b.-d. below, suppose that the medicine has a half-life of 12 hours in her body and that, rather than entering her body continuously throughout the day, Quinn takes one 200mg pill each morning at 8am.
Let Q_n be the quantity, in mg, of this medicine that is in Quinn’s body immediately after she takes the nth pill. For example, Q_1 is the amount of medicine in her body immediately after she takes her first dose.
 b. [2 points] Find the values of Q_1, Q_2 and Q_3.

 Answers: $Q_1 = \underline{}$ $Q_2 = \underline{}$ $Q_3 = \underline{}$

 c. [4 points] Write a closed form expression for Q_n. (Your answer should not include sigma notation or ellipses (⋯).)

 Answer: $Q_n = \underline{}$

 d. [2 points] What is $\lim_{n \to \infty} Q_n$? Interpret your answer in the context of the problem.