4. [7 points] The position of a particle in the plane is given by a pair of parametric equations x = x(t) and y = y(t) where x and y are measured in meters and t is measured in seconds. The functions x(t) and y(t) satisfy the differential equations

$$\frac{dx}{dt} = p(x)$$
 and $\frac{dy}{dt} = h(t)$

for functions p(x) and h(t). Some values of the functions p and h are provided in the tables below.

x	0	1	2	3	4	5
p(x)	1	4	6	-2	0	3

t	0	0.5	1	1.5	2
h(t)	2	-4	1	0	3

a. [4 points] Suppose that x(0) = 3 and y(0) = 2. Use Euler's method with $\Delta t = 0.5$ to approximate the values of x(1) and y(1). Show your calculation for each step of Euler's method.

Answer: $x(1) \approx \underline{\hspace{1cm}}$

 $y(1) \approx$

b. [3 points] Suppose that x(2) = 1 and y(2) = 5. How fast is the particle moving when t = 2?