11. [12 points] Quinn is a patient taking a new experimental medicine.

a. [4 points] Quinn knows that the amount of the medicine in her body decays at a rate proportional to the current amount of the medicine in her body with constant of proportionality \(k > 0 \). Let \(Q = Q(t) \) be the quantity, in mg, of this medicine that is in Quinn’s body \(t \) days after she begins taking it. Assuming the medicine enters her body at a continuous rate of 200mg per day, write a differential equation that models \(Q(t) \), and give an appropriate initial condition.

Answer:

Differential Equation: \[\frac{dQ}{dt} = 200 - kQ \]

Initial Condition: \(Q(0) = 0 \)

b. [2 points] Find the values of \(Q_1 \), \(Q_2 \) and \(Q_3 \).

Answers: \(Q_1 = 200 \) \(Q_2 = \frac{200}{1 - \frac{1}{4}} = \frac{200}{3} \) \(Q_3 = \frac{200}{3} \left[1 - \left(\frac{1}{4}\right)^3 \right] \)

c. [4 points] Write a closed form expression for \(Q_n \). (Your answer should not include sigma notation or ellipses (⋯).)

Answer: \(Q_n = \frac{200}{3} \left[1 - \left(\frac{1}{4}\right)^n \right] \)

d. [2 points] What is \(\lim_{n \to \infty} Q_n \)? Interpret your answer in the context of the problem.

\[\lim_{n \to \infty} Q_n = \frac{800}{3} \]
In the long run, the amount of drug in the body just after taking a pill is about 266 mg.