4. [7 points] The position of a particle in the plane is given by a pair of parametric equations x = x(t) and y = y(t) where x and y are measured in meters and t is measured in seconds. The functions x(t) and y(t) satisfy the differential equations

$$\frac{dx}{dt} = p(x)$$
 and $\frac{dy}{dt} = h(t)$

for functions p(x) and h(t). Some values of the functions p and h are provided in the tables below.

0.5	0	t	5	4	3	2	1	0	x
-4	2	h(t)	3	0	-2	6	4	1	

a. [4 points] Suppose that x(0) = 3 and y(0) = 2. Use Euler's method with $\Delta t = 0.5$ to approximate the values of x(1) and y(1). Show your calculation for each step of Euler's method.

