8. [8 points] A very unique sand dollar has an interesting pattern on it. The outline of the sand dollar is given by the polar equation \(r = 2 \). On the face of the sand dollar are many other polar curves \(c_n \). For \(n = 1, 2, 3, \ldots \), the curve \(c_n \) is given by the polar equation \(r = \frac{1}{n} \sin(5\theta) \). Below is a picture of the sand dollar (left) and a zoomed in view of two of the polar curves (right).

 ![Polar curves](image)

 a. [3 points] Let \(a_0 \) be the area that is inside the sand dollar but outside \(c_1 \). Write a formula involving one or more integrals for \(a_0 \).

 \[
 a_0 = 4\pi - 5 \left(\text{area of one petal of } c_1 \right) = 4\pi - 5 \cdot \frac{1}{2} \int_0^{\pi/5} \sin^2(5\theta) \, d\theta
 \]

 b. [3 points] For \(n \geq 1 \), let \(a_n \) be the area inside \(c_n \) but outside \(c_{n+1} \). Write a formula involving one or more integrals for \(a_n \) when \(n \geq 1 \).

 \[
 a_n = \frac{5}{2} \int_0^{\pi/5} \frac{1}{n^2} \sin^2(5\theta) \, d\theta - \frac{5}{2} \int_0^{\pi/5} \frac{1}{(n+1)^2} \sin^2(5\theta) \, d\theta
 \]

 c. [2 points] Does the infinite series \(\sum_{n=0}^{\infty} a_n \) converge or diverge? If it converges, what is its value? No justification is necessary.

 \[a_0 + a_1 + a_2 + \ldots \text{ converges to the area of the whole sand dollar, which is } 4\pi. \]