9. [8 points] This problem concerns a rocket that has been launched and is ascending.

You may assume the acceleration due to gravity is $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.
Because it is burning fuel, the rocket's mass is decreasing. Let $m(h)$ be the mass (in kg) of the rocket during its ascent when it is at a height of h meters above the ground.
a. [2 points] Suppose Δh is small. Write an expression (not involving integrals) in terms of m and h that approximates the work (in joules) required for the rocket to ascend from a height of h meters above the ground to a height of $h+\Delta h$ meters above the ground.

b. [2 points] Write, but do not evaluate, an integral that gives the total work (in joules) required for the rocket to ascend from a height of 100 meters above the ground to a height of 2500 meters above the ground.

Let $v(h)$ be the rocket's velocity (in m / s) when it is at a height of h meters above the ground.
c. [2 points] Suppose Δh is small. Write an expression (not involving integrals) in terms of v and h that approximates the time (in seconds) it takes for the rocket to ascend from a height of h meters above the ground to a height of $h+\Delta h$ meters above the ground.

d. [2 points] Write, but do not evaluate, an integral that gives the total time (in seconds) it takes for the rocket to ascend from a height of 100 meters above the ground to a height of 2500 meters above the ground:

