3. [10 points] Consider the function f(x) graphed below.

a. [3 points] Let $F(x) = \int_0^x f(t) dt$. Find the x-coordinates of all local extrema of F(x) and classify them as local maxima or local minima. Write "NONE" if there are none.

Answer: Local maxima at x =______8

b. [3 points] Let
$$G(x) = \int_{3x}^{x^2} f(t) dt$$
. Compute $G'(-1)$.

Solution: Using the second fundamental theorem of calculus we compute

$$G'(x) = f(x^2) \cdot 2x - f(3x) \cdot 3.$$

Therefore,

$$G'(-1) = -2f(1) - 3f(-3) = -26$$

Answer: $G'(-1) = \underline{\hspace{1cm} -26}$

c. [2 points] Which approximation method is guaranteed to underestimate $\int_{-4}^{0} f(x) dx$?

MID TRAP LEFT RIGHT NONE OF THESE

d. [2 points] Which approximation method is guaranteed to overestimate $\int_{-1}^{5} f(x) dx$?

MID TRAP LEFT RIGHT NONE OF THESE