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4. [11 points]
a. [6 points] Determine whether the following series converges absolutely, converges condi-
tionally, or diverges, and give a complete argument justifying your answer.
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Justification:
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Solution: This series converges by the alternating series test, which applies, since sin(;;
is a positive decreasing sequence that converges to zero.

It does not converge absolutely since for n > 1

1
% <sm(1)

o0

1
We know the series Z — diverges by p-test with p = 1. Then by the comparison test,

so must Z sin ( Z |(—1)"sin ( l)|

Alternatively, we can use the Limit Comparison Test. Since

lim sin(1/n) _ lim sin(1/n) — lim sin(y)
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we know that E — and E sin (%) must either both converge or both diverge. Since
n
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g — is the harmonic series, which we know diverges, E sin (%) must diverge as well.
n
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b. [5 points] Compute the value of the following improper integral. Show all your work
using correct notation. Evaluation of integrals must be done without a calculator.
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Solution:

First we change to limit notation, then use u-substitution with v =1 + e”.
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Alternatively, first compute the antiderivative using u-substitution.

r 1 1 1
[atapde= [mdi=—y =
(14 e%)? u? u 1+ e

Thus,
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