- 5. [10 points] Compute the exact value of each of the following. You do not need to show work.
 - **a.** [2 points] Find the radius of convergence R of $\sum_{n=1}^{\infty} \frac{5(x-1)^n}{3^n}$.

Solution: By the geometric series test this series converges if

$$\frac{|x-1|}{3} < 1$$

which implies that the radius of convergence is R=3.

Answer:
$$R =$$

b. [2 points]
$$\sum_{n=1}^{100} e^n$$

Answer:
$$\sum_{n=1}^{100} e^n = \underline{\frac{e^{101} - e}{e-1}}$$

c. [2 points] $\lim_{n\to\infty}\int_{-\infty}^n p(t)\,dt$, where p(t) is a probability density function.

Answer:
$$\lim_{n\to\infty} \int_{-\infty}^{n} p(t) dt = \underline{\qquad \qquad 1}$$

d. [2 points] Find the function f(x) satisfying $\int x^3 e^x dx = x^3 e^x - \int f(x) dx$

Solution: Taking the derivative of both sides we find that

$$x^3 e^x = 3x^2 e^x + x^3 e^x - f(x).$$

Therefore $f(x) = 3x^2e^x$.

Answer:
$$f(x) = \underline{\qquad \qquad 3x^2e^x}$$

e. [2 points]
$$\sum_{n=0}^{\infty} \frac{(-4)^n}{(2n)!}$$

Solution: After rewriting the series as

$$\sum_{n=0}^{\infty} \frac{(-4)^n}{(2n)!} = \sum_{n=0}^{\infty} \frac{(-1)^n 2^{2n}}{(2n)!},$$

we recognize this as $\cos(2)$.

Answer:
$$\sum_{n=0}^{\infty} \frac{(-4)^n}{(2n)!} = \frac{\cos(2)}{(2n)!}$$