7. [6 points] The function $r(t)$, defined for all real numbers t, gives the position of a particle moving along the unit circle,

$$
r(t)=\left(\cos \left(t-t^{3}\right), \sin \left(t-t^{3}\right)\right) .
$$

a. [3 points] Find all values of t where the particle stops moving.

Solution: The particle stops moving when its speed is zero. The speed is given by

$$
\sqrt{\left(-\sin \left(t-t^{3}\right)\left(1-3 t^{2}\right)\right)^{2}+\left(\cos \left(t-t^{3}\right)\left(1-3 t^{2}\right)\right)^{2}}=\left|1-3 t^{2}\right| .
$$

Therefore the speed is zero at $t= \pm \frac{1}{\sqrt{3}}$.

$$
\text { Answer: } t=\square \pm \frac{1}{\sqrt{3}}
$$

b. [3 points] For which values of t is the particle moving counterclockwise?

Solution: The parametric function $r(t)$ moves counterclockwise precisely when $f(t)=$ $t-t^{3}$ is increasing, which is the same as $f^{\prime}(t)>0$. Since $f^{\prime}(t)=1-3 t^{2}$, this happens for t in $\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$.

Answer:

$$
-\frac{1}{\sqrt{3}}<t<\frac{1}{\sqrt{3}}
$$

