9. [7 points] After the first ever picture of a black hole was released by Event Horizon Telescope (EHT), the public awaits an image of Sgr A*, the black hole at the Galactic Center. Let t be the amount of time, in years, between now and when the EHT releases such an image. The probability density function for t is given by

$$q(t) = \begin{cases} 0 & \text{for } t < 0 \\ 1/2^n & \text{for } t < 0 \end{cases}$$
 for each positive integer n .

Part of the graph of q(t) is given below.

a. [4 points] Let Q(t) be the cumulative distribution function for t. Carefully sketch the graph of Q(t) on the domain $-1 \le t \le 3$.

b. [3 points] Let P_n be the probability that EHT releases an image of Sgr A* within n years, and p_n be the probability that release time is in the nth year. For each part below, circle "True" if the statement must be true and circle "False" otherwise. No justification is necessary.

$$\rho_n = \int_{n-1}^{n} g(t) dt$$

$$= \frac{1}{2^n}$$

The sequence
$$p_n$$
 converges. $\frac{1}{2^n} \rightarrow 0$ True False

The sequence P_n converges to 0. $\frac{1}{2^n} p_n = \frac{1}{1-1/2} = 1$ True False

The series $\sum_{n=1}^{\infty} p_n$ converges. True False