5. [5 points] Let $p(x)$ be the probability density function for the price of a meal on South University Avenue where $x$ is given in dollars. The formula of $p(x)$ is given as follow:

$$
p(x)=\frac{1}{\sqrt{\pi}} e^{-(x-9)^{2}}
$$

a. [2 points] Write, but do not evaluate, an integral that gives the probability of a meal on South University Avenue being between $\$ 8$ and $\$ 14$.
b. [3 points] Write, but do not simplify, an expression that estimates your integral in (a) by MID(3). Be sure to write out all the terms in your sum.
6. [8 points] Ari and Bell are enjoying their time at a beach.
a. [ 5 points] Ari has an ice cream cone of radius 0.1 m and height 0.3 m , as shown in the following picture. The cone is filled to the top with ice cream, and the ice cream located a vertical distance $h$ meters above the bottom tip of the cone (the point at the bottom of the figure below) has density $\delta(h)=\ln (2-h) \mathrm{kg} / \mathrm{m}^{3}$. An example of the vertical distance $h$ is shown in the figure below.


Write, but do not compute, one or more integral(s) to express the total mass of the ice cream cone. Include units.
b. [3 points] Bell is lifting a bottle of water straight upwards 3 meters at a constant speed. The bottle initially has a mass of 2 kg , and it is leaking at a steady rate of $0.5 \mathrm{~kg} / \mathrm{m}$. Assume that gravitational acceleration is $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$. Write, but do not compute, one or more integral(s) to express the total work done by Bell on the bottle. Include units.

