11. [12 points] Let $f(x)=x(1-x)^{-1 / 2}$.
a. [4 points] Write down the first 3 non-zero terms of the Taylor series for $f(x)$ centered at $x=0$. Show your work.
Solution: From the list of "Known" Taylor series:

$$
(1+x)^{p}=1+p x+\frac{p(p-1)}{2!} x^{2}+\cdots
$$

Put $p=-\frac{1}{2}$:

$$
(1+x)^{-1 / 2}=1-\frac{1}{2} x+\frac{3}{8} x^{2}+\cdots
$$

Replace x by $-x$:

$$
(1-x)^{-1 / 2}=1+\frac{1}{2} x+\frac{3}{8} x^{2}+\cdots
$$

Multiply by x :

$$
x(1-x)^{-1 / 2}=x+\frac{1}{2} x^{2}+\frac{3}{8} x^{3}+\cdots
$$

b. [3 points] Let $F(x)$ be an antiderivative of $f(x)$ such that $F(0)=2$. Write down the first 4 non-zero terms of the Taylor series for $F(x)$ centered at $x=0$. Show your work.

Solution: By the second fundamental theorem of calculus,

$$
F(x)=2+\int_{0}^{x} f(t) d t
$$

Therefore,

$$
F(x)=2+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{3}{32} x^{4}+\cdots
$$

c. [5 points] Compute the exact value of $\int_{0}^{3 / 4} f(x) d x$. Show each step of your computation.

Solution: Integration by parts: Let $u=x$ and $v^{\prime}=(1-x)^{-1 / 2}$. Then $u^{\prime}=1$ and $v=-2(1-x)^{1 / 2}$. We have

$$
\begin{aligned}
\int_{0}^{3 / 4} x(1-x)^{-1 / 2} d x & =-\left.2 x(1-x)^{1 / 2}\right|_{0} ^{3 / 4}+2 \int_{0}^{3 / 4}(1-x)^{1 / 2} d x \\
& =\left(-2 x(1-x)^{1 / 2}-\frac{4}{3}(1-x)^{3 / 2}\right)_{0}^{3 / 4} \\
& =\left(-\frac{3}{4}-\frac{1}{6}\right)+\frac{4}{3}=\frac{5}{12}
\end{aligned}
$$

