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11. [12 points] Let f(z) = (1 — )" '/2.
a. [4 points] Write down the first 3 non-zero terms of the Taylor series for f(z) centered at
x = 0. Show your work.

Solution: From the list of “Known” Taylor series:
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Replace = by —x:
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Multiply by z:
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b. [3 points] Let F(z) be an antiderivative of f(x) such that F(0) = 2. Write down the first
4 non-zero terms of the Taylor series for F'(x) centered at x = 0. Show your work.

Solution: By the second fundamental theorem of calculus,

Flz) =2+ /O £(t) dt.

Therefore,
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c. [5 points|] Compute the exact value of (x) dx. Show each step of your computation.
0

Solution: Integration by parts: Let u = z and v' = (1 — :1:)_1/2. Then v/ = 1 and
v=—2(1—z)"2. We have
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