2. [13 points] To scare intruders off the island, Flora chases the intruders around. Her position at t minutes after she begins chasing the intruders is given by a parametric curve $(x, y)=$ $(f(t), g(t))$. The graphs of $f(t)$ and $g(t)$ are given below, with x, y in km . For this question, "north" is the positive y-direction, and "east" is the positive x-direction.

a. [1 point] What is Flora's position at $t=0$?

Solution: $\quad f(0)=2$ and $g(0)=-2$, so Flora is at $(2,-2)$ at $t=0$.
b. [2 points] For $0 \leq t \leq 8$, at which t-value(s) is Flora at $(0,0)$? If there is no such time, write "NONE".
Solution: $\quad f(t)=0$ at $t=2,6$, and $g(t)=0$ at $t=2,4,5.5$, so Flora is at $(0,0)$ only at $t=2$.
c. [2 points] For $0 \leq t \leq 8$, at which t-value(s) is Flora going directly west (i.e. not in any northwest or southwest direction)? If there is no such time, write "NONE".

Solution: "Going west" means $f^{\prime}(t)<0$, and "going directly west" means Flora isn't travelling at any y-direction, i.e. $g^{\prime}(t)=0$. We have that $g^{\prime}(t)=0$ at $t=3,5,6$. Among these $3 t$-values, only at $t=3$ is $f^{\prime}(t)<0$. So Flora is going directly west only at $t=3$.
d. [2 points] For $0 \leq t \leq 8$, during which t-interval(s) is Flora going south? This includes any southeast and southwest directions, not only directly south. If there is no such time, write "NONE".
Solution: "Going south" means $g^{\prime}(t)<0$, so t needs to be in $(3,5)$.
e. [2 points] For $0 \leq t \leq 8$, at which t-value(s) does Flora come to a stop? If there is no such time, write "NONE".

Solution: "Coming to a stop" means both $f^{\prime}(t)$ and $g^{\prime}(t)$ are 0 . From the reasoning in (c), $g^{\prime}(t)=0$ when $t=3,5,6$. Among these 3 points, only at $t=6$ is $f^{\prime}(t)=0$. So Flora only comes to a stop at $t=6$.
f. [4 points] Given that $f(1)=4 / 3, f^{\prime}(1)=-5 / 4$, and $g(t)$ is linear for $0<t<2$, find an equation for the tangent line to Flora's path at $t=1$, given in Cartesian coordinates.

Solution: From the graph, $g(1)=-1$ and $g^{\prime}(1)=1$. The slope of the tangent line at $t=1$ is

$$
\frac{g^{\prime}(1)}{f^{\prime}(1)}=\frac{1}{-5 / 4}=-\frac{4}{5} .
$$

By point-slope form, the tangent line at $t=1$ is

$$
y-(-1)=-\frac{4}{5}\left(x-\frac{4}{3}\right) .
$$

