4. [12 points] Let

$$
G(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n 5^{n}} x^{n}
$$

a. [6 points] What is the interval of convergence for $G(x)$? Show the mechanics of any tests or theorems you use. Take as given, and do not show, that the radius of convergence of $G(x)$ is 5 .
Solution: The center is at $x=0$, so the two end points are 5 and -5 .
At $x=5$,

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n 5^{n}} 5^{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}
$$

Since $\frac{1}{n}$ is positive, decreasing, and $\lim _{n \rightarrow \infty} \frac{1}{n}=0$, the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges by alternating series test.
At $x=-5$,

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n 5^{n}}(-5)^{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n 5^{n}}(-1)^{n} 5^{n}=-\sum_{n=1}^{\infty} \frac{1}{n}
$$

which diverges by p-test, $p=1$.
Therefore, the interval of convergence is $(-5,5]$.
b. [3 points] Find $G^{(100)}(0)$.

Solution: Consider the coefficient of x^{100} of the power series.

$$
\begin{aligned}
\frac{G^{(100)}(0)}{100!} & =\frac{(-1)^{101}}{100 \cdot 5^{100}} \\
G^{(100)}(0) & =-\frac{100!}{100 \cdot 5^{100}}
\end{aligned}
$$

c. [3 points] Compute the exact value of $G(2)$.

Solution:

$$
G(2)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n 5^{n}} 2^{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}\left(\frac{2}{5}\right)^{n} .
$$

From the list of "Known" Taylor series,

$$
\ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^{n}
$$

for $-1<x \leq 1$. Plug in $x=2 / 5$, we have that $G(2)=\ln \left(1+\frac{2}{5}\right)=\ln (7 / 5)$.

