6. [8 points] Ari and Bell are enjoying their time at a beach.
a. [5 points] Ari has an ice cream cone of radius 0.1 m and height 0.3 m , as shown in the following picture. The cone is filled to the top with ice cream, and the ice cream located a vertical distance h meters above the bottom tip of the cone (the point at the bottom of the figure below) has density $\delta(h)=\ln (2-h) \mathrm{kg} / \mathrm{m}^{3}$. An example of the vertical distance h is shown in the figure below.

Write, but do not compute, one or more integral(s) to express the total mass of the ice cream cone. Include units.

Solution: By similar triangles or setting up linear equations, radius at vertical distance $h \mathrm{~m}$ above the bottom tip is given by

$$
\frac{r}{0.1}=\frac{h}{0.3}, \quad r=\frac{h}{3} .
$$

Mass of the slice of ice cream at height $h \mathrm{~m}$ is

$$
\pi\left(\frac{h}{3}\right)^{2} \Delta h \ln (2-h) \mathrm{kg} .
$$

Total mass of ice cream is

$$
\int_{0}^{0.3} \pi\left(\frac{h}{3}\right)^{2} \ln (2-h) d h \mathrm{~kg} .
$$

b. [3 points] Bell is lifting a bottle of water straight upwards 3 meters at a constant speed. The bottle initially has a mass of 2 kg , and it is leaking at a steady rate of $0.5 \mathrm{~kg} / \mathrm{m}$. Assume that gravitational acceleration is $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$. Write, but do not compute, one or more integral(s) to express the total work done by Bell on the bottle. Include units.

Solution: Let $h \mathrm{~m}$ be the distance of the bottle of water from its starting location at a particular instance. The mass of water at the position is $2-0.5 h \mathrm{~kg}$. The slice of work to lift the bottle from this position for Δh meter is given by

$$
(2-0.5 h) \cdot g \cdot \Delta h \mathrm{~J}
$$

Total work is

$$
\int_{0}^{3}(2-0.5 h) \cdot g d h \mathrm{~J} .
$$

