7. [15 points] Nat is sailing a boat in a lake, with the path given by the following polar graph.

a. [ 4 points] What are all the angles $\theta$, with $0 \leq \theta \leq 2 \pi$, for which the graph passes through the origin?

Solution: At the origin, $r=0$.

$$
\begin{gathered}
4 \cos ^{2} \theta-1=0 \\
\cos ^{2} \theta=\frac{1}{4} \\
\cos \theta=\frac{1}{2} \quad \text { or } \quad \cos \theta=-\frac{1}{2} \\
\theta=\frac{\pi}{3}, \frac{5 \pi}{3} \quad \text { or } \quad \theta=\frac{2 \pi}{3}, \frac{4 \pi}{3}
\end{gathered}
$$

So $\theta=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}$.
b. [4 points] Write down, but do not evaluate, one or more integral(s) that gives the arc length of the larger horizontal figure 8 from the path above, as given in the following graph.


Solution: When $\theta=0$, we have $r=4-1=3$, so the $x, y$-coordinates of the point is $(3,0)$. When $\theta$ increases, the graph travels counter-clockwise. The part in the 1 st quadrant is traced when $\theta$ increases from $\theta=0$ til the first time the graph meets the origin, i.e. $\pi / 3$. As for the 4 th quadrant, the portion of the graph is traced when $\theta$ decreases from $\theta=0$ til the first time the graph meets the origin at a negative angle, i.e. $\theta=5 \pi / 3-2 \pi=-\pi / 3$. Therefore, the right loop has arc length

$$
\int_{-\pi / 3}^{\pi / 3} \sqrt{\left(4 \cos ^{2} \theta-1\right)^{2}+(-8 \cos \theta \sin \theta)^{2}} d \theta .
$$

By symmetry, the total arc length of the horizontal figure 8 is given by doubling the right loop, i.e.

$$
2 \int_{-\pi / 3}^{\pi / 3} \sqrt{\left(4 \cos ^{2} \theta-1\right)^{2}+(-8 \cos \theta \sin \theta)^{2}} d \theta
$$

Alternatively, the left loop is traced from $\theta=2 \pi / 3$ to $\theta=4 \pi / 3$, so the total arc length can also be written as

$$
\begin{aligned}
& \text { left loop + right loop }=\int_{2 \pi / 3}^{4 \pi / 3} \begin{array}{r}
\sqrt{\left(4 \cos ^{2} \theta-1\right)^{2}+(-8 \cos \theta \sin \theta)^{2}} d \theta \\
\\
\quad+\int_{-\pi / 3}^{\pi / 3} \sqrt{\left(4 \cos ^{2} \theta-1\right)^{2}+(-8 \cos \theta \sin \theta)^{2}} d \theta
\end{array} .
\end{aligned}
$$

Alternatively, the total arc length of the horizontal figure 8 is 4 times the arc length of the portion in the first quadrant, by symmetry, so it is

$$
4 \int_{0}^{\pi / 3} \sqrt{\left(4 \cos ^{2} \theta-1\right)^{2}+(-8 \cos \theta \sin \theta)^{2}} d \theta
$$

c. [5 points] Another boat is travelling around the unit circle $r=1$, given by the dashed curve in the graph below. Write down, but do not evaluate, one or more integral(s) that gives the area of the shaded region, as shown below.


Solution: The two graphs intersect once at $0<\theta<\pi / 3$, and another time at $-\pi / 3<$ $\theta<0$. To solve for the angle of intersection, we set the two $r$ to be equal.

$$
\begin{gathered}
4 \cos ^{2} \theta-1=1 \\
\cos ^{2} \theta=\frac{1}{2} \\
\cos \theta=\frac{1}{\sqrt{2}} \quad \text { or } \quad \cos \theta=-\frac{1}{\sqrt{2}} \\
\theta=\frac{\pi}{4}, \frac{7 \pi}{4} \quad \text { or } \quad \theta=\frac{3 \pi}{4}, \frac{5 \pi}{4}
\end{gathered}
$$

or adding integer multiples of $2 \pi$ to any of these.
We want an angle in $0<\theta<\frac{\pi}{3}$ and another in $-\frac{\pi}{3}<\theta<0$, so we have $\theta=\frac{\pi}{4}$ and $-\frac{\pi}{4}$. Therefore, the area bounded by the solid curve is

$$
\frac{1}{2} \int_{-\pi / 4}^{\pi / 4}\left(4 \cos ^{2} \theta-1\right)^{2} d \theta .
$$

The area bounded by the dashed curve is

$$
\frac{1}{2} \int_{-\pi / 4}^{\pi / 4} 1^{2} d \theta=\frac{\pi}{4}
$$

so the shaded area is

$$
\frac{1}{2} \int_{-\pi / 4}^{\pi / 4}\left(4 \cos ^{2} \theta-1\right)^{2}-1^{2} d \theta .
$$

d. [2 points] Give an interval of $\theta$-values for which the polar equation $r=4 \cos ^{2} \theta-1$ traces out the upper loop of the smaller figure 8 as shown below.


Solution: From the analysis in (b), we know that as $\theta$ increases from 0 to $\pi / 3$, the first quadrant portion of the horizontal figure 8 is traced out.
Then as $\theta$ increases from $\pi / 3$ to $2 \pi / 3$, we have that $r=4 \cos ^{2} \theta-1$ is negative. As a result, the direction of the point is opposite to the direction indicated by the angle $\theta$. This means that we are below the $x$-axis instead of above the $x$-axis. As a result, the lower half of the small loop is traced out in $[\pi / 3,2 \pi / 3]$.
When $\theta$ increase from $2 \pi / 3$ to $4 \pi / 3$, the formula $r=4 \cos ^{2} \theta-1$ stays positive. Hence the direction is given by the angle indicated by the angle $\theta$. At this interval, the left half of the big horizontal figure 8 is traced out.
Finally, when $\theta$ increases from $4 \pi / 2$ to $5 \pi / 3$, we have that $r=4 \cos ^{2} \theta-1$ is negative. Hence we need to go to the opposite direction as indicated by $\theta$. As a result, we are at the upper half of the small loop when $\theta$ is in $[4 \pi / 3,5 \pi / 3]$.

