8. [10 points] For each of the questions below, write out on your paper all the answers which are always true. No explanation is needed.
a. [3 points] Given that the power series $\sum_{n=0}^{\infty} C_{n}(x-1)^{n}$ converges at $x=3$ and diverges at $x=8$, at which of the following x-value(s) must the series converge?

$$
\begin{array}{lllllllll}
-7 & -6 & -3 & -1 & 0 & 2 & 6 & 9 & \text { NONE OF THESE }
\end{array}
$$

Solution: 0,2
The power series converges at $x=3$, which is 2 away from the center $x=1$. Thus the radius of convergence is at least 2 , so the power series converges at $x=0,2$, which are within 2 from the center.
The power series does not need to converge at $x=-1$ (also 2 away from the center), since $x=-1$ could potentially be an end point of the interval of convergence.
b. [3 points] Note: This part has the same set up as (a), but asks about divergence.

Given that the power series $\sum_{n=0}^{\infty} C_{n}(x-1)^{n}$ converges at $x=3$ and diverges at $x=8$, at which of the following x-value(s) must the series diverge?

$$
\begin{array}{lllllllll}
-7 & -6 & -3 & -1 & 0 & 2 & 6 & 9 & \text { NONE OF THESE }
\end{array}
$$

Solution: -7,9
The power series diverges at $x=8$, which is 7 away from the center $x=1$. Thus the radius of convergence is at most 7 , so the power series diverges at $x=-7,9$, which are more than 7 away from the center.
The power series does not need to converge at $x=-6$ (also 7 away from the center), since $x=-6$ could potentially be an end point of the interval of convergence.
c. [4 points] Let $x=f(t), y=g(t)$ (where $0 \leq t \leq 10$) be a parametric curve such that $y=x^{2}$. Which of the following must be true?
(i) If V is the speed of the curve at $t=4$, then $V \geq f^{\prime}(4)$.
(ii) $f^{\prime}(t) \geq 0$ for $0<t<10$.
(iii) $g(t) \geq 0$ for $0<t<10$.
(iv) The tangent line to the curve at $t=1$ is $y=2 x-1$.
(v) NONE OF THE ABOVE

Solution: (i), (iii)
(i): $V=\sqrt{\left(f^{\prime}(4)\right)^{2}+\left(g^{\prime}(4)\right)^{2}}$. Since $\left(g^{\prime}(4)\right)^{2} \geq 0$, we have $V \geq \sqrt{\left(f^{\prime}(4)\right)^{2}}=\left|f^{\prime}(4)\right|$.
(ii): It is possible for $f^{\prime}(t)<0$. For example, we can have $(x, y)=\left(-t, t^{2}\right)$.
(iii): $g(t)=y=x^{2} \geq 0$.
(iv): $y=2 x-1$ is the tangent line to the curve at $(1,1)$. However, the curve is not necessarily at $(1,1)$ when $t=1$. For example, if $(x, y)=\left(-t, t^{2}\right)$, then the curve is at $(-1,1)$ when $t=1$.

