- 4. [8 points] Suppose a_n and b_n are sequences of positive numbers, defined for n = 1, 2, 3..., satisfying the following conditions:
 - $a_n \leq \frac{1}{n^{1/2}}$ • $b_n \geq \frac{1}{n}$

a. [1 point] $\lim_{n \to \infty} a_n = 0.$

For each statement below, circle ALWAYS if the statement is always true, SOMETIMES if the statement can be true or false depending on the specifics of a_n or b_n , and NEVER if the statement is false for all specific a_n or b_n .

ALWAYS SOMETIMES NEVER **b**. [1 point] $\lim_{n \to \infty} b_n = 0.$ SOMETIMES ALWAYS **NEVER c**. [1 point] a_n is bounded. ALWAYS SOMETIMES **NEVER d**. [1 point] b_n is monotone. SOMETIMES ALWAYS NEVER **e.** [1 point] $\sum_{n=1}^{\infty} a_n$ converges. ALWAYS SOMETIMES NEVER **f.** [1 point] $\sum_{n=1}^{\infty} b_n$ converges. ALWAYS SOMETIMES NEVER **g.** [1 point] $\sum_{n=1}^{\infty} (-1)^n b_n$ converges. ALWAYS SOMETIMES **NEVER h**. [1 point] $\sum_{n=1}^{\infty} (-1)^n a_n$ converges. ALWAYS SOMETIMES NEVER