5. [16 points] The following problems relate to the polar graph shown below, defined by the polar curve $r(\theta) = 2\sin(2\theta) + 1$, on the domain $[0, 2\pi]$. Both the dashed and solid curves are part of the graph of $r(\theta)$.

Answers: _____

b. [4 points] Determine the θ intervals corresponding to the dashed portions \mathcal{A} and \mathcal{B} of the curve above.

Interval for \mathcal{A} : ______ Interval for \mathcal{B} : _____

c. [4 points] Write an expression involving one or more integrals for the area of the region enclosed by the **solid** curves only (do not include the region enclosed by the dashed curves).

page 10

d. [4 points] Write an expression involving one or more integrals for the total arc length of the **dashed** curves in the graph above.