2. [11 points] Consider the function $f(x)=e^{-2 x}$, and the region \mathcal{R} bounded by the x-axis, the y-axis, $y=f(x)$ and $x=q$, where q is a positive constant larger than 2 .

a. [4 points] Give a formula for, but do not compute, the volume of the solid formed by rotating the region \mathcal{R} around the y-axis. Your answer should depend on q. (Hint: Use the shell method)
Solution: Using shell method, we see that $V=\int_{0}^{q} 2 \pi x e^{-2 x} d x$.
Using washer method, we get:

$$
\int_{0}^{e^{-2 q}} \pi q^{2} d y+\int_{e^{-2 q}}^{1} \pi\left(\frac{1}{2} \ln (y)\right)^{2} d y
$$

b. [4 points] Compute the integral you found in part a). Your final answer should be in terms of q.
Solution: Using shell method from a) allows us use integration by parts with $u=x$ and $d v=e^{-2 x} d x$ to give $d u=d x$ and $v=\frac{-1}{2} e^{-2 x}$. Putting this together gives:

$$
\int_{0}^{q} 2 \pi x e^{-2 x} d x=-\left.\pi x e^{-2 x}\right|_{0} ^{q}+\pi \int_{0}^{q} e^{-2 x} d x=\left.\pi\left[-x e^{-2 x}-\frac{1}{2} e^{-2 x}\right]\right|_{0} ^{q}
$$

When we evaluate FTC, we get:

$$
V=\pi\left[-q e^{-2 q}-\frac{1}{2} e^{-2 q}-0+\frac{1}{2}\right]
$$

c. [3 points] Taking a limit of your answer in b), compute the volume of the infinitely long solid of revolution formed by rotating the region \mathcal{R} around the y-axis. Be sure to show how you got the value of your limit.

Solution: An infinitely long solid means $q \rightarrow \infty$. Therefore we get

$$
V=\lim _{q \rightarrow \infty} \pi\left[q e^{-2 q}-\frac{1}{2} e^{-2 q}-0+\frac{1}{2}\right]=\pi\left[0-0+0+\frac{1}{2}\right]=\frac{\pi}{2} .
$$

where the first limit vanishes by L'Hopital or dominating functions argument, and the second is just a standard limit.

