6. [9 points] Suppose the Taylor series for a function $f(x)$ around $x=3$ is

$$
\sum_{n=1}^{\infty} \frac{(6)^{-n}((2 n)!)}{n!(n-1)!}(x-3)^{2 n}
$$

a. [6 points] Compute the radius of convergence for this series. Be sure to fully justify your answer and show all work. Do not compute the interval of convergence.
Solution: We use the ratio test:

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(6)^{-(n+1)}((2 n+2)!)}{(n+1)!n!} \frac{n!(n-1)!}{(6)^{-(n)}((2 n)!)} \frac{(x-3)^{2 n+2}}{(x-3)^{2 n}}\right|<1
$$

Pairing terms to cancel we get:

$$
\lim _{n \rightarrow \infty}\left|\frac{(6)^{-(n+1)}}{(6)^{-(n)}} \frac{((2 n+2)!)}{((2 n)!)} \frac{n!(n-1)!}{(n+1)!n!}(x-3)^{2}\right|<1
$$

Then simplifying we are left with:

$$
\lim _{n \rightarrow \infty}\left|\frac{1}{6} \cdot \frac{(2 n+1)(2 n+1)}{(n+1) n} \cdot(x-3)^{2}\right|<1
$$

Then, if we take the limit, by L'Hopital or a dominating functions argument, the radius, we get:

$$
\frac{2}{3}|x-3|^{2}<1
$$

which means $|x-3|<\left(\frac{3}{2}\right)^{1 / 2}$.
Radius of Convergence: $\quad \sqrt{\frac{3}{2}}$
b. [3 points] Find $f^{(2022)}(3)$ and $f^{(2023)}(3)$.

Solution: A power series is its own Taylor series, so we get we just need to find n such that :

$$
\frac{f^{(2022)}(3)}{(2022!)}(x-3)^{2022}=\frac{(6)^{-n}((2 n)!)}{n!(n-1)!}(x-3)^{2 n}
$$

Comparing powers of $(x-3)$, we see that $2 n=2022$, and so $n=1011$. This means:

$$
\frac{f^{(2022)}(3)}{(2022!)}=\frac{(6)^{-1011}((2022)!)}{(1011!)(1010!)}
$$

and so

$$
f^{(2022)}(3)=\frac{(6)^{-1011}(2022!)^{2}}{(1011!)(1010!)}
$$

Since the series is even, $f^{(2023)}(3)=0$

$$
f^{(2022)}(3)=\frac{\frac{(6)^{-1011}(2022!)^{2}}{(1011!)(1010!)}}{} \quad f^{(2023)}(3)=\frac{0}{}
$$

