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6. [9 points] Suppose the Taylor series for a function f(z) around z = 3 is
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a. [6 points] Compute the radius of convergence for this series. Be sure to fully justify your
answer and show all work. Do not compute the interval of convergence.

Solution: We use the ratio test:
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Pairing terms to cancel we get:
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Then simplifying we are left with:
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Then, if we take the limit, by L’Hopital or a dominating functions argument, the radius,
we get:
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which means |z — 3| < (%)1/2.
3
Radius of Convergence: 2

b. [3 points] Find f(2022)(3) and f(2023)(3).

Solution: A power series is its own Taylor series, so we get we just need to find n such

that :
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Comparing powers of (z — 3), we see that 2n = 2022, and so n = 1011. This means:
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and so
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Since the series is even, f(2023)(3) =0
(6)—1011(2022!)2 0
F(2022)(3)= (To117)(10107) £(2023)(3)=




