7. [6 points] Compute the interval of convergence of the series:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n 4^{n}}(x-4)^{n}
$$

Show all work and give all necessary justification. You may assume it has radius of convergence 4 and you do not need to show this.
Solution: We have that the radius of convergence is 4 . We know that the series is centered at $x=4$. Therefore, to compute the interval of convergence, we just need to check convergence at the endpoints, which occur at 0 and 8 . At $x=0$, the series becomes:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n 4^{n}}(0-4)^{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n}(-4)^{n}}{n 4^{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{2 n} 4^{n}}{n 4^{n}}=\sum_{n=1}^{\infty} \frac{1}{n}
$$

This diverges by $p$-test $p=1$, so the series does not converge at $x=0$, meaning the interval is now $(0,8$ ?
If we plug in $x=8$, we get:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n 4^{n}}(8-4)^{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n}(4)^{n}}{n 4^{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}
$$

As the terms $a_{n}=\frac{1}{n}$ are decreasing and going to zero, this series converges by the alternating series test. Since the series converges at $x=8$, we include it in the radius of convergence

