8. [11 points]
a. [6 points] Give the first three non-zero terms of the Taylor Series for the function:

$$
\left(x^{2}+2\right) \sin (x)
$$

centered at $x=0$.
Solution: The function $\left(x^{2}+2\right)$ is a polynomial, and therefore its own Taylor series. Next, we take the known Taylor series for $\sin (x)$. Since we need the first three non-zero terms, we start with the first 3 non-zero terms of $\sin (x)$. This gives:

$$
\left(x^{2}+2\right) \sin (x) \approx\left(x^{2}+2\right)\left(x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}\right)
$$

If we expand the right side, we get:

$$
x^{3}-\frac{1}{3!} x^{5}+\frac{1}{5!} x^{7}+2 x-\frac{2}{3!} x^{3}+\frac{2}{5!} x^{5}
$$

Now, if we group terms, we get:

$$
2 x+\left(1-\frac{2}{3!}\right) x^{3}+\left(\frac{2}{5!}-\frac{2}{3!}\right) x^{5}+\frac{1}{5!} x^{7}
$$

Nothing has cancelled out, meaning the first three terms here are the first three non-zero terms we need. Therefore the final answer is:

$$
2 x+\left(1-\frac{2}{3!}\right) x^{3}+\left(\frac{2}{5!}-\frac{2}{3!}\right) x^{5}
$$

b. [5 points] Compute the limit:

$$
\lim _{x \rightarrow 0} \frac{\int_{0}^{2 x}\left(\left(\frac{t}{2}\right)^{2}+2\right) \sin \left(\frac{t}{2}\right) d t}{x^{2}}
$$

Solution: Solutions 1 and 2): If we examine the bounds of the integral, we see that as $x \rightarrow 0$, the numerator becomes zero. This means that the answer is in indeterminant form, and we can apply L'Hopital. Using second FTC, and chain rule, we get that the limit becomes:

$$
\lim _{x \rightarrow 0} \frac{2\left(\left(x^{2}+2\right) \sin (x)\right)}{2 x}=\lim _{x \rightarrow 0} \frac{\left(x^{2}+2\right) \sin (x)}{x}
$$

From here, the limit becomes $\frac{0}{0}$ again, so we have two options. We can apply L'Hopital again, turning the limit into:

$$
\lim _{x \rightarrow 0} \frac{\left(2 x \sin (x)+\left(x^{2}+2\right) \cos (x)\right)}{1}=\frac{\left(0+\left(0^{2}+2\right) \cos (0)\right)}{1}=2
$$

Or, instead of L'Hopital, we can plug in the answer from a) to get:
$\lim _{x \rightarrow 0} \frac{2 x+\left(1-\frac{2}{3!}\right) x^{3}+\left(\frac{2}{5!}-\frac{2}{3!}\right) x^{5}}{x}=\lim _{x \rightarrow 0} 2+\left(1-\frac{2}{3!}\right) x^{2}+\left(\frac{2}{5!}-\frac{2}{3!}\right) x^{4}=2+0+0=2$.

Solution 3): It is also possible to integrate the answer from a). Doing a u-sub, with $u=t / 2$, before taking the limit, we get

$$
\lim _{x \rightarrow \infty} \frac{2 \int_{0}^{x}\left(u^{2}+2\right) \sin (u) d u}{x^{2}}
$$

Subbing in the answer from a) we get:

$$
\lim _{x \rightarrow \infty} \frac{\left.2 \int_{0}^{x} 2 u+\left(1-\frac{2}{3!}\right) u^{3}+\left(\frac{2}{5!}-\frac{2}{3!}\right) u^{5}\right) d u}{x^{2}}
$$

This becomes:

$$
\lim _{x \rightarrow \infty} \frac{2\left(x^{2}+\frac{1}{4}\left(1-\frac{2}{3!}\right) x^{4}+\frac{1}{6}\left(\frac{2}{5!}-\frac{2}{3!}\right) x^{6}\right)}{x^{2}}
$$

Which becomes:

$$
\lim _{x \rightarrow \infty} 2\left(1+\frac{1}{4}\left(1-\frac{2}{3!}\right) x^{2}+\frac{1}{6}\left(\frac{2}{5!}-\frac{2}{3!}\right) x^{4}\right)=2(1+0+0)=2
$$

