1. [12 points] Let g(x) be a **differentiable** function, and let G(x) be a **continuous antiderivative** of g(x). Some values of g(x) and G(x) are given in the table below:

x	-2	-1	0	1	2
g(x)	0	$\sqrt{3}$	4	5	-1
G(x)	π	1/2	-2	0	1

Use the table above to answer the following questions. Write your answers in **exact form**. If there is not enough information to complete a problem, write "NEI." Your answers should not involve the letters g or G, but you do not need to simplify your final answers. Show all your work.

a. [3 points] Compute the **average value** of $g'(g(x)) \cdot g'(x)$ on the interval [-2, 2].

b. [3 points] Compute F'(1), where $F(x) = \int_{x^3-2}^4 G(t) dt$.

Answer:

Answer:

c. [3 points] Approximate $\int_{-2}^{2} G(x) dx$ using TRAP(2).

Answer:

d. [3 points] Compute $\lim_{x \to \infty} x G(1 + \frac{1}{x})$.

© 2024 Univ of Michigan Dept of Mathematics Creative Commons BY-NC-SA 4.0 International License