4. [10 points] Louise, the world-famous abstract artist and cheese enthusiast, has a dream about an infinitely-long cheese sculpture. The sculpture involves \mathcal{R} , which is the region above the x-axis and below the curve $f(x) = xe^{-2x}$ on the interval $[0, \infty)$. A portion of \mathcal{R} is the shaded region below.

a. [4 points] Write an improper integral that represents the **volume** of the infinitely-long solid of revolution formed by rotating the region \mathcal{R} around the *x*-axis.

Your answer should not involve the letter f. Do not evaluate your integral.

Solution: We use the disk method (the washer method but with no inner radius). The disk method states that the volume of a disk of thickness Δx at a point $x \ge 0$ is of the form $\pi R(x)^2 \Delta x$ for some function R(x) representing the radius of our disk. For each $x \ge 0$, the radius R(x) is given by the distance from the x-axis to y = f(x), which is $R(x) = xe^{-2x}$. This gives us our answer:

$$\int_0^\infty \pi \left(x e^{-2x} \right)^2 dx$$

Note: To use the shell method, as we are rotating around a horizontal axis, we would need to write an integral over $0 \le y \le \frac{1}{2}e^{-1}$, where $\frac{1}{2}e^{-1}$ is the global maximum of f(x) on the interval $[0,\infty)$. This requires us to solve the equation y = f(x) for x in terms of y. But we cannot solve the equation $y = xe^{-2x}$ for x, so we cannot write an integral using the shell method here.

page 5

Answer:

 $\int_0^\infty \pi \left(x e^{-2x}\right)^2 dx$

b. [6 points] The **area** of the region \mathcal{R} (not the volume of the rotated solid) is given by the improper integral

$$\int_0^\infty x e^{-2x} \, dx.$$

Determine whether this improper integral is convergent or divergent.

You may use either a direct computation or the comparison test to reach your conclusion.

Fully justify your answer including using proper notation. Circle your final answer choice.

Circle one: Convergent

Divergent

Solution: There are two ways to solve this problem:

Solution 1 (Direct computation): We can directly evaluate this integral. To do so, we use proper notation and integrate by parts:

$$\int_{0}^{\infty} x e^{-2x} dx = \lim_{b \to \infty} \int_{0}^{b} x e^{-2x} dx$$
$$= \lim_{b \to \infty} \left(-\frac{1}{2} x e^{-2x} \Big|_{0}^{b} + \frac{1}{2} \int_{0}^{b} e^{-2x} dx \right)$$
$$= \lim_{b \to \infty} \left(-\frac{1}{2} x e^{-2x} - \frac{1}{4} e^{-2x} \Big|_{0}^{b} \right)$$
$$= \lim_{b \to \infty} \left(-\frac{1}{2} b e^{-2b} - \frac{1}{4} e^{-2b} + 0 + \frac{1}{4} \right) = \frac{1}{4}$$

(The limit $\lim_{b\to\infty} be^{-2b}$ can be computed by L'Hôpital's rule or a dominating functions argument.) Therefore, by **direct computation**, the integral is **convergent**.

Solution 2 (Comparison test): Alternatively, we can show that the integral is convergent without computing its value. Observe that $x \leq e^x$ for all $x \geq 0$, so that

$$xe^{-2x} \le e^x e^{-2x} = e^{-x}$$
 for all $x \ge 0$.

By the **exponential decay test**, the integral $\int_0^\infty e^{-x} dx$ is **convergent**. Therefore, by the **comparison test**, the integral $\int_0^\infty x e^{-2x} dx$ is **convergent**.