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8. [8 points]

a. [4 points] Write down the first 3 nonzero terms of the Taylor series for the function
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centered at x = 0. You do not need to simplify any numbers in your answer.

Solution: We can use the “known” Taylor series for ex:
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This gives the first three nonzero terms.
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b. [4 points] Compute the following limit. Fully justify your answer including using proper

notation.
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Hint: Your answer from the previous part may be helpful at some point.

Solution: We start by using L’Hôpital’s rule. To take the derivative of the numerator, we
apply the Second Fundamental Theorem of Calculus (note that the integral cannot be evaluated
directly):
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Below are two possible ways to complete the problem:

Solution 1 (Taylor series): Here we use our Taylor series from part (a). From this, we have
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Solution 2 (L’Hôpital’s rule): Alternatively, we can apply L’Hôpital’s rule again:
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Answer:
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