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5. [12 points] The Taylor series centered at x = −1 for a function f(x) is given by:

f(x) =
∞
∑

n=0

9n(n!)2

(2n+ 1)!
(x+ 1)2n+1

a. [7 points] Determine the radius of convergence of the Taylor series above. Show all of your
work. You do not need to find the interval of convergence.

Solution: We use the ratio test to find the radius of convergence. First, we form
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Now, we evaluate the limit:
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The ratio test tells us that the Taylor series converges when this value is less than 1, i.e.,
9

4
|x + 1|2 < 1. Rearranging the inequality, we find that |x + 1|2 <

4

9
, which implies that the

radius of convergence is
2

3
.

Answer:
2

3

b. [5 points] Find f (2025)(−1) and f (2026)(−1). You do not need to simplify your answers.

Solution: All even powers of (x+ 1) have zero coefficient. Hence f (2026)(−1) = 0.
On the other hand, (x+ 1)2025 appears when 2n+ 1 = 2025, i.e., when n = 1012. Thus

f (2025)(−1)

2025!
=

91012(1012!)2

2025!
.

Rearranging and simplifying, we get

f (2025)(−1) = 91012(1012!)2.

Answer: f (2025)(−1) = 91012(1012!)2 and f (2026)(−1) = 0
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