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6. [10 points] A power series centered at x = 3 is given by
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The radius of convergence of this power series is 5 (do not show this). Find the interval of conver-
gence of this power series. Show all your work, including full justification for series behavior.

Solution:  Since we know the radius of convergence, we just need to test the behavior at the
endpoints, which are 3 —5 = —2, and 34+ 5 = 8.

At x = —2, the series is
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To determine the behavior of this, we use the Alternating Series Test. Set a,, = OB Then
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and for all n > 1,
0 < ant1 < ap,
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so by the Alternating Series test, Z 312(—1—Tll+) converges.
Therefore = —2 is included in the 1nterval of convergence.

At x = 8, the series is

[e.e] oo
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We can show that this series diverges using either the Direct Comparison Test or the Limit Com-
parison Test; here, we’ll use the Direct Comparison Test.

2n+1 2n 1 =1
Forn > 1, > = —, and g — diverges, by the p-test, with p = 1. Therefore, by
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the (Direct) . This tells us that 2 = 8 is not included in the

interval of convergence.
Therefore, the interval of convergence is [—2, 8).
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Interval of convergence:
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